翻訳と辞書
Words near each other
・ Iwikau Te Heuheu Tukino III
・ Iwikauikaua
・ Iwasaki Castle
・ Iwasaki Tsunemasa
・ Iwasaki Yanosuke
・ Iwasaki Yatarō
・ Iwasaki's snail-eater
・ Iwasaki, Aomori
・ Iwasawa
・ Iwasawa algebra
・ Iwasawa conjecture
・ Iwasawa decomposition
・ Iwasawa group
・ Iwasawa manifold
・ Iwasawa Station
Iwasawa theory
・ Iwase
・ Iwase (surname)
・ Iwase Dam
・ Iwase District, Fukushima
・ Iwase Province
・ Iwase Station
・ Iwase, Fukushima
・ Iwase, Ibaraki
・ Iwashi Uri Koi Hikiami
・ Iwashima Station
・ Iwashimizu Hachimangū
・ Iwashiro Province
・ Iwashiro Station
・ Iwashiro, Fukushima


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iwasawa theory : ウィキペディア英語版
Iwasawa theory
In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by , as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently (early 90s), Ralph Greenberg has proposed an Iwasawa theory for motives.
==Formulation==
Iwasawa worked with so-called \mathbb_p-extensions: infinite extensions of a number field F with Galois group \Gamma isomorphic to the additive group of p-adic integers for some prime ''p''. Every closed subgroup of \Gamma is of the form \Gamma^ , so by Galois theory, a \mathbb_p -extension F_\infty/F is the same thing as a tower of fields F = F_0 \subset F_1 \subset F_2 \subset \ldots \subset F_\infty such that \textrm(F_n/F)\cong \mathbb/p^n\mathbb. Iwasawa studied classical Galois modules over F_n by asking questions about the structure of modules over F_\infty.
More generally, Iwasawa theory asks questions about the structure of Galois modules over extensions with Galois group a p-adic Lie group.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iwasawa theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.